European Communication Format – B2B

Environmental Product Declaration

BI-ORIENTED POLYVINYLCHLORIDE (PVC-O),
MRS 31,5 MPA PIPE SYSTEM FOR WATER DISTRIBUTION
CONTENTS

1 DECLARATION OF GENERAL INFORMATION 3

2 DECLARATION OF THE MATERIAL CONTENT 5

3 DECLARATION OF THE ENVIRONMENTAL PARAMETERS DERIVED FROM LCA 5
 3.1 Life cycle flow diagram 5
 3.2 Parameters describing environmental impacts 7
 3.3 Parameters describing resource input 7
 3.4 Parameters describing different waste categories and further output material flows 8

4 SCENARIOS AND TECHNICAL INFORMATION 8
 4.1 Construction process stage 8
 4.2 Use stage: operation and maintenance 10
 4.3 End-of-life 10

5 ADDITIONAL INFORMATION ON EMISSIONS TO INDOOR AIR, SOIL AND WATER DURING USE STAGE 11

6 OTHER ADDITIONAL INFORMATION 11

7 REFERENCES 15
1. DECLARATION OF GENERAL INFORMATION

Introduction
The European Plastics Pipes and Fittings Association (TEPPFA) deems it important to have an insight into the integral environmental impacts that are encountered during the lifespan of particular pipe system applications.

With this framework in mind, in 2010 TEPPFA has set up an LCA/EPD project with the Flemish Institute for Technological Research (VITO) which resulted in an EPD. The present EPD is the update of the EPD issued in 2013 – foreground data remained the same, with only the datasets being updated to the latest available version (Ecoinvent 3.3 and Industry 2.0 replaced Ecoinvent 2 datasets).

It outlines the various environmental aspects, which accompany the Bi-oriented Polyvinylchloride (PVC-O), MRS 31,5 MPa pipe system for water distribution, from the primary extraction of raw materials up to and including the end of life (EoL) treatment after its reference service lifetime.

PVC-O, MRS 31,5 MPa pipe system’s use and functional unit
The EPD refers to a typical European Bi-oriented Polyvinylchloride (PVC-O), MRS 31,5 MPa pipe system for water distribution, from the cradle to the grave, raw material extraction, transportation to converters, converting process, transport to trench, construction, use and end of life. Environmental indicators are expressed for the complete life cycle, from the cradle to the grave, so for an average European PVC-O, MRS 31,5 MPa pipe system.

The functional unit is defined as “the below ground transportation of drinking water, over a distance of 100 m (from the exit of the water plant to the water meter of the building), by a typical public European PVC-O water distribution pipe system (Ø 110 mm) over its complete life cycle of 100 years, calculated per year”.

Product name & graphic display of product
PVC-O, MRS 31,5 MPa pipe system for water distribution

Name and address of manufacturers
TEPPFA, Avenue de Cortenbergh, 71, B-1000
Brussels, Belgium
Tel: +32 2 736 24 06
E-Mail: info@teppfa.eu
Website: www.teppfa.eu
Description of the PVC-O, MRS 31,5 MPa pipe system’s components

The environmental burdens are calculated in relation to the functional unit, which resulted for the typical European PVC-O, MRS 31,5 MPa pipe system for water distribution in the following basic pipe system components: PVC-O pipes; PVC-U fittings, ductile iron fittings, bolts, rings, washers, nuts (made out of galvanized steel); cutter of stainless steel and EPDM gaskets.

The PVC-O pipe material consists of dark grey unplasticized polyvinylchloride MRS 31,5 MPa. The pipe has a diameter of 110 mm (as a representative for the average pipe diameter from the exit of the water plant to the water meter of the building). Standard dimension ratio: SDR 41 with wall thickness of 2,7 mm. The meter weight of the 110 mm pipe has been calculated as average weight per metre from actual sales across a market in sizes 20 mm to 1000 mm, this resulted in a meter weight of 1,3614 kg. The service lifetime of 100 years is taken from Schulte and Hessel (2006). 2 types of fittings have been taken into account, PVC-U fittings and ductile iron fittings. The popularity of fittings in the “average” pipe of the functional unit has been calculated from actual sales data. The weight of fittings was calculated from company weight/piece data. For the PVC-O, MRS 31,5 MPa pipe system the same flow capacity has been taken into account as for a PVC-U pipe of a 110 mm SDR 26, of average roughness at a flow speed of 1,5 m per second (EN 805 advises that “in practice it will be desirable to avoid unduly high or low velocities. The range 0,5 m/s to 2,0 m/s may be considered appropriate). The EPD is declared as the average environmental performance for a typical European PVC-O, MRS 31,5 MPa pipe system, over its reference service life cycle of 100 years, calculated per year, in accordance to ISO 16422, EN 805 and EN 1295-1.

EPD programme and programme operator

The present EPD is in line with the ongoing standardization work by CEN TC 350 (pr EN15804 and pr EN15942). A programme operator related to the CEN T350 has not been established yet.

Date of declaration and validity

December 2018
The EPD has a 5 year validity period (December, 2023)

Comparability

Please note that EPDs of construction products may not be comparable if they do not comply with the CEN TC 350 (pr EN15804 and pr EN15942) standards.

Typical European PVC-O, MRS 31,5 MPa pipe system EPD

The present EPD outlines various environmental aspects, which accompany a typical European PVC-O, MRS 31,5 MPa, pipe system for water distribution, from the primary extraction of raw materials up to and including the end of life (EoL) treatment after its reference service lifetime of 100 years.

Group of manufacturers

The EPD for the PVC-O, MRS 31,5 MPa pipe system is representative for an anticipated European typical PVC-O, MRS 31,5 MPa pipe system for water distribution. The TEPPFA member companies represent more than 50% of the European market for extruded plastic pipes. For an overview of all members and national associations within TEPPFA we refer to pages 12-14 of this EPD.

Content of the product system

The product system does not contain materials or substances that can adversely affect human health and the environment in any stages of the life cycle.

Retrieve information

Explanatory material may be obtained by contacting TEPPFA (http://www.tepfa.eu)
2. DECLARATION OF THE MATERIAL CONTENT

The European Bi-oriented Polyvinylchloride (PVC-O), MRS 31,5 MPa pipe system for water distribution does not contain any substances as such or in concentration exceeding legal limits, which can adversely affect human health and the environment in any stages of its entire life cycle.

3. DECLARATION OF THE ENVIRONMENTAL PARAMETERS DERIVED FROM LCA

3.1 Life cycle flow diagram

The EPD refers to a typical European PVC-O, MRS 31,5 MPa pipe system for water distribution, from the cradle to the grave, including product stage, transport to construction site and construction process stage, use stage and end of life stage.

- **Product stage**: raw material extraction and processing, recycling processes for recycled material input, transport to the manufacturer, manufacturing (including all energy provisions, waste management processes during the product stage up to waste for final disposal):
 - Production of raw materials for PVC-O (MRS 31,5 MPa) pipes
 - Transport of PVC pipe raw materials to converter;
 - Converting process for PVC-O (MRS 31,5 MPa) pipes (extrusion)
 - Production raw materials for PVC-U fittings;
 - Transport of PVC-U fitting raw materials to converter
 - Converting process for PVC-U fittings (injection moulding)
 - Production of ductile iron fittings (raw materials, transport and production process)
 - Production of galvanised steel components (raw materials + converting process)
 - Production of steel cutter
 - Production of EPDM gaskets (raw materials + converting process)

- **Construction process stage**: including all energy provisions, waste management processes during the construction stage up to waste for final disposal:
 - Transport of PVC pipe system to the trench
 - Installation of PVC-O pipe system in the trench

- **Use stage (maintenance and operational use)**: including transport and all energy provisions, waste management processes up to waste for final disposal during this use stage
 - Use and maintenance of the complete PVC-O pipe system for water distribution during 100 years of reference service lifetime

- **End of life stage**: including all energy provisions during the end of life stage:
 - Disassembly of PVC-O pipe system for water distribution after 100 years of reference service lifetime at the trench
 - Transport of complete PVC-O pipe system for water distribution after 100 years reference service lifetime to an end-of-life treatment (in case the pipe system does not stay in the ground)
 - End-of-life waste treatment of complete PVC-O pipe system for water distribution after 100 years reference service lifetime (in case the pipe system does not stay in the ground)
Production of raw materials for all PVC-O pipe system components

Transport of these raw materials to pipe system component producers

Production of pipe system components

Transport of PVC-O pipe system to the trench

Installation of PVC-O pipe system at the trench

Use and maintenance of PVC-O pipe system

Disassembly of PVC-O pipe system after its reference service life time

Transport of PVC-O pipe system after its reference service life time to an end-of-life treatment

End-of-life waste treatment of the PVC-O pipe system
3.2 Parameters describing environmental impacts

The following environmental parameters are expressed with the impact category parameters of the life cycle impact assessment (LCIA).

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Abiotic depletion (non-fossil) kg Sb eq</th>
<th>Abiotic depletion (fossil fuels) MJ</th>
<th>Acidification kg S02 eq</th>
<th>Eutrophication kg PO4--- eq</th>
<th>Global warming kg CO2 eq</th>
<th>Ozone layer depletion kg CFC-11 eq</th>
<th>Photochemical oxidation kg C2H4 eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product stage</td>
<td>1,82E-05</td>
<td>8,94E+01</td>
<td>1,43E-02</td>
<td>1,84E-03</td>
<td>4,30E+00</td>
<td>3,06E-07</td>
<td>1,08E-03</td>
</tr>
<tr>
<td>Construction process stage</td>
<td>4,52E-06</td>
<td>3,93E+01</td>
<td>1,66E-02</td>
<td>3,48E-03</td>
<td>2,57E+00</td>
<td>4,74E-07</td>
<td>5,09E-04</td>
</tr>
<tr>
<td>Use stage</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>End of life stage</td>
<td>6,57E-08</td>
<td>2,20E-01</td>
<td>6,46E-05</td>
<td>1,66E-05</td>
<td>6,54E-02</td>
<td>3,05E-09</td>
<td>2,81E-06</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,28E-05</td>
<td>1,29E+02</td>
<td>3,09E-02</td>
<td>5,34E-03</td>
<td>6,93E+00</td>
<td>7,83E-07</td>
<td>1,59E-03</td>
</tr>
</tbody>
</table>

3.3 Parameters describing resource input

The following environmental parameters apply data based on the life cycle inventory (LCI).

<table>
<thead>
<tr>
<th>Environmental parameter</th>
<th>Use of renewable primary energy excluding renewable primary energy resources used as raw materials MJ, net calorific value</th>
<th>Use of renewable primary energy resources used as raw materials MJ, net calorific value</th>
<th>Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials) MJ, net calorific value</th>
<th>Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials MJ, net calorific value</th>
<th>Use of non renewable primary energy resources used as raw materials MJ, net calorific value</th>
<th>Use of secondary material kg</th>
<th>Use of renewable secondary fuels MJ, net calorific value</th>
<th>Use of non renewable secondary fuels MJ, net calorific value</th>
<th>Net use of fresh water m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product stage</td>
<td>na</td>
<td>na</td>
<td>6,03E+00</td>
<td>na</td>
<td>1,15E+02</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2,86E-01</td>
</tr>
<tr>
<td>Construction process stage</td>
<td>na</td>
<td>na</td>
<td>1,88E+00</td>
<td>na</td>
<td>4,14E+01</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>3,40E-01</td>
</tr>
<tr>
<td>Use stage</td>
<td>na</td>
<td>na</td>
<td>0,00E+00</td>
<td>na</td>
<td>0,00E+00</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>End of life stage</td>
<td>na</td>
<td>na</td>
<td>-3,81E-02</td>
<td>na</td>
<td>3,57E-02</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>-1,24E-04</td>
</tr>
<tr>
<td>TOTAL</td>
<td>na</td>
<td>na</td>
<td>7,87E+00</td>
<td>na</td>
<td>1,57E+02</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>6,26E-01</td>
</tr>
</tbody>
</table>
3.4 Parameters describing different waste categories and further output material flows

The parameters describing waste categories and other material flows are output flows derived from the life cycle inventory (LCI):

Parameters describing different waste categories

<table>
<thead>
<tr>
<th>Environmental parameter</th>
<th>Hazardous waste</th>
<th>Non-hazardous waste</th>
<th>Nuclear waste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>Product stage</td>
<td>9,47E-02</td>
<td>3,00E-01</td>
<td>1,09E-04</td>
</tr>
<tr>
<td>Construction stage</td>
<td>2,44E-05</td>
<td>7,09E-01</td>
<td>3,02E-04</td>
</tr>
<tr>
<td>Use stage</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
<td>0,00E+00</td>
</tr>
<tr>
<td>End of life stage</td>
<td>-1,63E-07</td>
<td>1,57E+00</td>
<td>6,35E-07</td>
</tr>
<tr>
<td>TOTAL</td>
<td>9,47E-02</td>
<td>2,57E+00</td>
<td>4,11E-04</td>
</tr>
</tbody>
</table>

Parameters describing further output material flows

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter unit expressed per functional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components for re-use</td>
<td>1,493 kg</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>0,397 kg</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>0,043 kg</td>
</tr>
</tbody>
</table>

4. SCENARIOS AND TECHNICAL INFORMATION

4.1 Construction process stage

Transport from the production gate to the construction site (trench)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter unit expressed per functional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel type consumption of vehicle or vehicle type used for transport e.g. long distance truck, boat etc.</td>
<td>The PVC-O pipe system is transported over an average distance of 330 km by means of a truck from the producers of the different pipe system components to the trench. The loading factor for pipes is limited by volume. Environmental burdens associated with this kind of transport are calculated by means of the Ecoinvent V3.4 datarecord "Transport, freight, lorry 16-32 metric ton, EURO4 (RER) transport, freight, lorry 16-32 metric ton, EURO4</td>
</tr>
</tbody>
</table>
Construction (installation at trench)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter unit expressed per functional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancillary materials for installation</td>
<td>0.1392 m³ of backfilling sand trucked to trench over an average distance of 10 km. Environmental burdens associated with this kind of energy are calculated by means of the Ecoinvent V3.4 datarecord "Sand (CH) gravel and quarry operation</td>
</tr>
<tr>
<td>Other resource consumption</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Quantitative description of energy type (regional mix) and consumption during the installation process</td>
<td>15 MJ of mechanical energy is needed for excavating the soil (dig up), for excavating the backfilling soil and sand, for the stamping process (compaction next pipe) and for the vibration plate (compaction top). Environmental burdens associated with this kind of energy are calculated by means of the Ecoinvent V3.4 datarecords "Diesel, burned in building machine (GLO)</td>
</tr>
<tr>
<td>Waste on the building site, generated by the product's installation</td>
<td>0.024 kg of PVC-O pipe left over during installation: 80% to landfill, 15% to incineration and 5% to mechanical recycling. Transportation of PVC-O pipe left over to waste management treatment facilities is included: 600 km to recycling plant, 150 km to incineration with energy recovery and 50 km to landfill. Environmental burdens are calculated by means of the Ecoinvent v3.4 datarecord "Transport, freight, lorry 3.5-7.5 metric ton, EURO4 (RER)</td>
</tr>
<tr>
<td>Output materials as result of waste management processes at the building site e.g. of collection for recycling, for energy recovery, final disposal</td>
<td>0.0640 kg of packaging waste: treated according to European average packaging waste scenarios (Eurostat, 2006):</td>
</tr>
<tr>
<td></td>
<td>Recycling</td>
</tr>
<tr>
<td>Plastic</td>
<td>27%</td>
</tr>
<tr>
<td>Paper and board</td>
<td>75%</td>
</tr>
<tr>
<td>Wood</td>
<td>38%</td>
</tr>
<tr>
<td>Metals</td>
<td>66%</td>
</tr>
<tr>
<td>Total</td>
<td>57%</td>
</tr>
<tr>
<td>0.1488 m³ of soil: that has to be transported over an average distance of 5 km to the nearest depot. Environmental burdens are calculated by means of the Ecoinvent v3.4 datarecord "Transport, freight, lorry 3.5-7.5 metric ton, EURO4 (RER)</td>
<td>transport, freight, lorry 3.5-7.5 metric ton, EURO4</td>
</tr>
</tbody>
</table>

Emissions to ambient air, soil and water
No direct emissions at the trench. Emissions are related to the upstream processes (mining of sand, transportation processes and mechanical energy) and downstream processes (waste management and treatment) and are included in the Ecoinvent datarecords that are used for modelling the environmental impacts.
4.2 Use stage: operation and maintenance

Operation and maintenance:

Operational use (pumping energy) is not relevant for the EPD, since it falls outside the system boundaries of the LCA project. Maintenance is not needed for the PVC-O pipe system for water distribution.

4.3 End of life

The following end of life scenarios have been taken into account:

- Estimated reference service lifetime of 100 years (Schulte and Hessel, 2006)
- EoL approach for landfill, incineration with energy recovery (impacts and credits are assigned to the life cycle that generates the waste flows)
- Recycled content approach for recycling and use of recyclates (= impact of recycling and credits for recyclates, because less virgin materials are needed is assigned to the life cycle that uses the recyclates)

<table>
<thead>
<tr>
<th>Processes</th>
<th>Parameter unit expressed per functional unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection process</td>
<td>After a reference service lifetime of 100 years the PVC-O pipe system for water distribution might be replaced. In most cases (95%) the pipe system will be left in the ground. In some cases (5%) the pipe system is taken out and treated (recycled, incinerated or landfilled).</td>
</tr>
<tr>
<td>EOL scenario PVC pipes and fittings, EPDM gaskets</td>
<td>Mechanical recycling 2,5% Incineration 2,5% Left in ground 95%</td>
</tr>
<tr>
<td>EOL scenario ductile iron fittings</td>
<td>Mechanical recycling 4% Landfill 1% Left in ground 95%</td>
</tr>
</tbody>
</table>

The transportation distance of the PVC-O pipe system from the trench to a waste treatment facility depends on the treatment option. For mechanical recycling we assumed an average transportation distance of 600 km and for incineration an average distance of 150 km. For the ductile iron parts a transportation distance of 50 km to both mechanical recycling and landfill has been assumed. Environmental burdens associated with transportation are calculated by means of the following Ecoinvent v3.4 datarecord "Transport, freight, lorry 3.5-7.5 metric ton, EURO4 (RER) transport, freight, lorry 3.5-7.5 metric ton, EURO4 | Alloc Rec, U"
5. ADDITIONAL INFORMATION ON EMISSIONS TO INDOOR AIR, SOIL AND WATER DURING USE STAGE

Emissions to indoor air:
Since the PVC-O, MRS 31,5 MPa pipe system for water distribution is a buried system (in trench) we can confirm that emissions to indoor air are not relevant.

Emissions to soil and water:
Despite there is no approved European measurement method available, we can confirm that the PVC-U pipe system for water distribution does not contain any substances mentioned on the REACH-list.

6. OTHER ADDITIONAL INFORMATION

Product certification, conformity, marking
ISO 16422, Pipes and joints made of oriented unplasticized poly(vinyl chloride) (PVC-O) for the conveyance of water under pressure — Specifications

EN 805, Water supply. Requirements for systems and components outside buildings

EN 1295-1, Structural design of buried pipelines under various conditions of loading. Part 1: General requirements

Other technical product performances
For the full overview of the environmental benefits of plastic pipe systems please refer to the TEPPFA website: http://www.teppfa.eu
List of names and logos of TEPPFA member companies

Aliaxis

DYKA

Geberit International

Georg Fischer Piping Systems

LK

Nupi

Pipelife International

Polypipe

Rehau

Radius Systems

Uponor

Wavin
List of National Associations of TEPPFA

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPP</td>
<td>Czech Republic plastic pipes association</td>
</tr>
<tr>
<td>ASETUB</td>
<td>Asociación Española de Fabricantes de Tubos y Accesorios Plásticos</td>
</tr>
<tr>
<td>BPF</td>
<td>Plastic Pipes Group</td>
</tr>
<tr>
<td>BureauLeiding</td>
<td>Dutch Plastic Pipes Association</td>
</tr>
<tr>
<td>DPF</td>
<td>Danish Plastics Federation</td>
</tr>
<tr>
<td>FCIO</td>
<td>Fachverband der Chemischen Industrie Österreich</td>
</tr>
<tr>
<td>Essenscia PolyMatters</td>
<td>Belgian Federation for Chemistry and Life Sciences industries</td>
</tr>
<tr>
<td>FIPIF</td>
<td>Finnish Plastics Industries Federation</td>
</tr>
<tr>
<td>IPPMA</td>
<td>Irish Plastic Pipe Manufacturers Association</td>
</tr>
<tr>
<td>KRV</td>
<td>Kunststoffrohrverband e.V.- Fachverband der Kunststoffrohr-Industrie</td>
</tr>
<tr>
<td>MCsSz</td>
<td>Műanyag Csőgyártók Szövetsége</td>
</tr>
<tr>
<td>NPG Sweden</td>
<td>Swedish Plastic Pipe Association</td>
</tr>
<tr>
<td>PRIK</td>
<td>Polish Association of Pipes and Fittings</td>
</tr>
<tr>
<td>STR</td>
<td>Syndicat des Tubes et Raccords</td>
</tr>
<tr>
<td>VKR</td>
<td>Verband Kunststoffrohre und Rohrleitungstelle</td>
</tr>
</tbody>
</table>
List of names and logos of TEPPFA
Associated Members

- Borealis
- ECVM
- LyondellBasell
- Lubrizol
- Molecor

List of names and logos of TEPPFA
Supporting Members

- Rollepaal
7. REFERENCES

CEN TC 350 framework documents, 2008-2009

EN 15942: Sustainability of construction works – Environmental product declarations – Communication format – Business to Business

Ecoinvent, 2016. Ecoinvent database v3.3, Swiss Centre for Life Cycle Inventories, Switzerland. From: www.ecoinvent.org

EN 805, Water supply. Requirements for systems and components outside buildings

EN 1295-1, Structural design of buried pipelines under various conditions of loading. Part 1: General requirements

ISO 16422 Pipes and joints made of oriented unplasticized poly(vinyl chloride) (PVC-O) for the conveyance of water under pressure – Specifications

ISO, 2006

*ISO 14025, (2006), Environmental labels and declarations Type III – General principles.

Schulte U. and Hessel J., 2006. Remaining service life of plastic pipes after 41 years in service. Fachberichte. 3R International (45), Heft 9/2006. 5 p

Background LCA report (ISO 14040 and ISO 14044) prepared by

VITO
Flemish Institute for Technological Research
Boeretang 200,
B-2400 Mol, Belgium
Tel.: +32 1 433 55 11
Email: vito@vito.be

External critical review of underlying LCA by

Denkstatt GmbH,
Hietzinger Hauptstraße 28
A-1130 Wien, Austria
Tel.: +43 1 786 89 00
Email: office@denkstatt.at
Visit our website
www.teppfa.eu

TEPPFA Aisbl
71 Kortenberglaan,
Brussels 1000, Belgium

T: +32 2 736 24 06 71
E: info@teppfa.eu